Math 1B
 Midterm 2 Non-Volume Review

[1] Find the area of the region between $y=4-x^{2}$ and $y=x^{2}-2 x$ on [0, 4].
[2] Find the area under the curve $y=\cos ^{-1} x$.
[3] A solid of revolution has volume $\int_{0}^{\pi} 2 \pi(y+1)(1-\cos y) d y$. Sketch the region and the axis of revolution.

Do not use the x - nor y-axes as boundaries nor the axis of revolution.

[4] A solid of revolution has volume $\int_{1}^{4} \pi\left((3+x)^{2}-(3-\sqrt{x})^{2}\right) d x$. Sketch the region and the axis of revolution.

Do not use the x - nor y-axes as boundaries nor the axis of revolution.

[5] Find the average value of $f(x)=\frac{\sin x}{1+4 \cos ^{2} x}$ on $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$.
[6] If the average value of f on $[-5,6]$ is 7 and the average value of f on $[2,6]$ is -1 , find $\int_{-5}^{2} f(x) d x$.
[7] Find the value of c guaranteed by the Mean Value Theorem for Integrals for $f(x)=\sqrt{64-(x-2)^{2}}$ on $[-6,2]$.
[8] Find the length of the curve $y=\frac{1}{8} x^{4}+\frac{1}{4 x^{2}}$ on [1, 2].
[9] Find the length of the curve $y=\int_{2}^{x} \sqrt{t^{2}-2 t} d t$ on [2, 5].
[10] Find the length of the parametric curve $x=\frac{9}{4} t^{4}-2 t^{2}+5$ over $1 \leq t \leq 2$.

$$
y=4 t^{3}-2
$$

$x=e^{a t} \cos b t$ over $0 \leq t \leq 1$. $y=e^{a t} \sin b t$
[12] Find the area of the surface created by revolving the arc of $f(x)=\sqrt[3]{x}$ on $[0,8]$ about the y-axis.
[13] Find the area of the surface created by revolving the arc of $f(x)=\frac{x^{4}+3}{6 x}$ on $[1,2]$ about the x-axis.
[14] A continuous random variable X with mean value 5.4 has probability density function $f(x)=\left\{\begin{array}{lll}k x^{n}, & 0 \leq x \leq 9 \\ 0, & x<0 & \text { or }\end{array} \quad x>9\right.$ for some constants k and n.
[a] Find k and n.
[b] Find c such that the probability that X is less than C or greater than C are the same.
(This is called the median value of X.)

